Decided on Parakeet ONNX Runtime. Works pretty great. Realtime voice chat possible now. UX lacking.

This commit is contained in:
2026-01-19 00:29:44 +02:00
parent 0a8910fff8
commit 362108f4b0
34 changed files with 4593 additions and 73 deletions

View File

@@ -0,0 +1,231 @@
"""
WebSocket server for streaming ASR using onnx-asr
"""
import asyncio
import websockets
import numpy as np
import json
import logging
from asr.asr_pipeline import ASRPipeline
from typing import Optional
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class ASRWebSocketServer:
"""
WebSocket server for real-time speech recognition.
"""
def __init__(
self,
host: str = "0.0.0.0",
port: int = 8766,
model_name: str = "nemo-parakeet-tdt-0.6b-v3",
model_path: Optional[str] = None,
use_vad: bool = False,
sample_rate: int = 16000,
):
"""
Initialize WebSocket server.
Args:
host: Server host address
port: Server port
model_name: ASR model name
model_path: Optional local model path
use_vad: Whether to use VAD
sample_rate: Expected audio sample rate
"""
self.host = host
self.port = port
self.sample_rate = sample_rate
logger.info("Initializing ASR Pipeline...")
self.pipeline = ASRPipeline(
model_name=model_name,
model_path=model_path,
use_vad=use_vad,
)
logger.info("ASR Pipeline ready")
self.active_connections = set()
async def handle_client(self, websocket):
"""
Handle individual WebSocket client connection.
Args:
websocket: WebSocket connection
"""
client_id = f"{websocket.remote_address[0]}:{websocket.remote_address[1]}"
logger.info(f"Client connected: {client_id}")
self.active_connections.add(websocket)
# Audio buffer for accumulating ALL audio
all_audio = []
last_transcribed_samples = 0 # Track what we've already transcribed
# For progressive transcription, we'll accumulate and transcribe the full buffer
# This gives better results than processing tiny chunks
min_chunk_duration = 2.0 # Minimum 2 seconds before transcribing
min_chunk_samples = int(self.sample_rate * min_chunk_duration)
try:
# Send welcome message
await websocket.send(json.dumps({
"type": "info",
"message": "Connected to ASR server",
"sample_rate": self.sample_rate,
}))
async for message in websocket:
try:
if isinstance(message, bytes):
# Binary audio data
# Convert bytes to float32 numpy array
# Assuming int16 PCM data
audio_data = np.frombuffer(message, dtype=np.int16)
audio_data = audio_data.astype(np.float32) / 32768.0
# Accumulate all audio
all_audio.append(audio_data)
total_samples = sum(len(chunk) for chunk in all_audio)
# Transcribe periodically when we have enough NEW audio
samples_since_last = total_samples - last_transcribed_samples
if samples_since_last >= min_chunk_samples:
audio_chunk = np.concatenate(all_audio)
last_transcribed_samples = total_samples
# Transcribe the accumulated audio
try:
text = self.pipeline.transcribe(
audio_chunk,
sample_rate=self.sample_rate
)
if text and text.strip():
response = {
"type": "transcript",
"text": text,
"is_final": False,
}
await websocket.send(json.dumps(response))
logger.info(f"Progressive transcription: {text}")
except Exception as e:
logger.error(f"Transcription error: {e}")
await websocket.send(json.dumps({
"type": "error",
"message": f"Transcription failed: {str(e)}"
}))
elif isinstance(message, str):
# JSON command
try:
command = json.loads(message)
if command.get("type") == "final":
# Process all accumulated audio (final transcription)
if all_audio:
audio_chunk = np.concatenate(all_audio)
text = self.pipeline.transcribe(
audio_chunk,
sample_rate=self.sample_rate
)
if text and text.strip():
response = {
"type": "transcript",
"text": text,
"is_final": True,
}
await websocket.send(json.dumps(response))
logger.info(f"Final transcription: {text}")
# Clear buffer after final transcription
all_audio = []
last_transcribed_samples = 0
elif command.get("type") == "reset":
# Reset buffer
all_audio = []
last_transcribed_samples = 0
await websocket.send(json.dumps({
"type": "info",
"message": "Buffer reset"
}))
except json.JSONDecodeError:
logger.warning(f"Invalid JSON command: {message}")
except Exception as e:
logger.error(f"Error processing message: {e}")
await websocket.send(json.dumps({
"type": "error",
"message": str(e)
}))
except websockets.exceptions.ConnectionClosed:
logger.info(f"Client disconnected: {client_id}")
finally:
self.active_connections.discard(websocket)
logger.info(f"Connection closed: {client_id}")
async def start(self):
"""
Start the WebSocket server.
"""
logger.info(f"Starting WebSocket server on {self.host}:{self.port}")
async with websockets.serve(self.handle_client, self.host, self.port):
logger.info(f"Server running on ws://{self.host}:{self.port}")
logger.info(f"Active connections: {len(self.active_connections)}")
await asyncio.Future() # Run forever
def run(self):
"""
Run the server (blocking).
"""
try:
asyncio.run(self.start())
except KeyboardInterrupt:
logger.info("Server stopped by user")
def main():
"""
Main entry point for the WebSocket server.
"""
import argparse
parser = argparse.ArgumentParser(description="ASR WebSocket Server")
parser.add_argument("--host", default="0.0.0.0", help="Server host")
parser.add_argument("--port", type=int, default=8766, help="Server port")
parser.add_argument("--model", default="nemo-parakeet-tdt-0.6b-v3", help="Model name")
parser.add_argument("--model-path", default=None, help="Local model path")
parser.add_argument("--use-vad", action="store_true", help="Enable VAD")
parser.add_argument("--sample-rate", type=int, default=16000, help="Audio sample rate")
args = parser.parse_args()
server = ASRWebSocketServer(
host=args.host,
port=args.port,
model_name=args.model,
model_path=args.model_path,
use_vad=args.use_vad,
sample_rate=args.sample_rate,
)
server.run()
if __name__ == "__main__":
main()