Files
miku-discord/DUAL_GPU_BUILD_SUMMARY.md

185 lines
4.5 KiB
Markdown
Raw Normal View History

2026-01-09 00:03:59 +02:00
# Dual GPU Setup Summary
## What We Built
A secondary llama-swap container optimized for your **AMD RX 6800** GPU using ROCm.
### Architecture
```
Primary GPU (NVIDIA GTX 1660) Secondary GPU (AMD RX 6800)
↓ ↓
llama-swap (CUDA) llama-swap-amd (ROCm)
Port: 8090 Port: 8091
↓ ↓
NVIDIA models AMD models
- llama3.1 - llama3.1-amd
- darkidol - darkidol-amd
- vision (MiniCPM) - moondream-amd
```
## Files Created
1. **Dockerfile.llamaswap-rocm** - Custom multi-stage build:
- Stage 1: Builds llama.cpp with ROCm from source
- Stage 2: Builds llama-swap from source
- Stage 3: Runtime image with both binaries
2. **llama-swap-rocm-config.yaml** - Model configuration for AMD GPU
3. **docker-compose.yml** - Updated with `llama-swap-amd` service
4. **bot/utils/gpu_router.py** - Load balancing utility
5. **bot/globals.py** - Updated with `LLAMA_AMD_URL`
6. **setup-dual-gpu.sh** - Setup verification script
7. **DUAL_GPU_SETUP.md** - Comprehensive documentation
8. **DUAL_GPU_QUICK_REF.md** - Quick reference guide
## Why Custom Build?
- llama.cpp doesn't publish ROCm Docker images (yet)
- llama-swap doesn't provide ROCm variants
- Building from source ensures latest ROCm compatibility
- Full control over compilation flags and optimization
## Build Time
The initial build takes 15-30 minutes depending on your system:
- llama.cpp compilation: ~10-20 minutes
- llama-swap compilation: ~1-2 minutes
- Image layering: ~2-5 minutes
Subsequent builds are much faster due to Docker layer caching.
## Next Steps
Once the build completes:
```bash
# 1. Start both GPU services
docker compose up -d llama-swap llama-swap-amd
# 2. Verify both are running
docker compose ps
# 3. Test NVIDIA GPU
curl http://localhost:8090/health
# 4. Test AMD GPU
curl http://localhost:8091/health
# 5. Monitor logs
docker compose logs -f llama-swap-amd
# 6. Test model loading on AMD
curl -X POST http://localhost:8091/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3.1-amd",
"messages": [{"role": "user", "content": "Hello!"}],
"max_tokens": 50
}'
```
## Device Access
The AMD container has access to:
- `/dev/kfd` - AMD GPU kernel driver
- `/dev/dri` - Direct Rendering Infrastructure
- Groups: `video`, `render`
## Environment Variables
RX 6800 specific settings:
```yaml
HSA_OVERRIDE_GFX_VERSION=10.3.0 # Navi 21 (gfx1030) compatibility
ROCM_PATH=/opt/rocm
HIP_VISIBLE_DEVICES=0 # Use first AMD GPU
```
## Bot Integration
Your bot now has two endpoints available:
```python
import globals
# NVIDIA GPU (primary)
nvidia_url = globals.LLAMA_URL # http://llama-swap:8080
# AMD GPU (secondary)
amd_url = globals.LLAMA_AMD_URL # http://llama-swap-amd:8080
```
Use the `gpu_router` utility for automatic load balancing:
```python
from bot.utils.gpu_router import get_llama_url_with_load_balancing
# Round-robin between GPUs
url, model = get_llama_url_with_load_balancing(task_type="text")
# Prefer AMD for vision
url, model = get_llama_url_with_load_balancing(
task_type="vision",
prefer_amd=True
)
```
## Troubleshooting
If the AMD container fails to start:
1. **Check build logs:**
```bash
docker compose build --no-cache llama-swap-amd
```
2. **Verify GPU access:**
```bash
ls -l /dev/kfd /dev/dri
```
3. **Check container logs:**
```bash
docker compose logs llama-swap-amd
```
4. **Test GPU from host:**
```bash
lspci | grep -i amd
# Should show: Radeon RX 6800
```
## Performance Notes
**RX 6800 Specs:**
- VRAM: 16GB
- Architecture: RDNA 2 (Navi 21)
- Compute: gfx1030
**Recommended Models:**
- Q4_K_M quantization: 5-6GB per model
- Can load 2-3 models simultaneously
- Good for: Llama 3.1 8B, DarkIdol 8B, Moondream2
## Future Improvements
1. **Automatic failover:** Route to AMD if NVIDIA is busy
2. **Health monitoring:** Track GPU utilization
3. **Dynamic routing:** Use least-busy GPU
4. **VRAM monitoring:** Alert before OOM
5. **Model preloading:** Keep common models loaded
## Resources
- [ROCm Documentation](https://rocmdocs.amd.com/)
- [llama.cpp ROCm Build](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md#rocm)
- [llama-swap GitHub](https://github.com/mostlygeek/llama-swap)
- [Full Setup Guide](./DUAL_GPU_SETUP.md)
- [Quick Reference](./DUAL_GPU_QUICK_REF.md)